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Abstract

We assess the significance of the effect of maternal smoking on birthweight. Our
main results suggest that there is a significantly negative effect of smoking on the mean
birthweight. Furthermore, we find that both the decision to smoke or not - but also
the decision on how much to smoke has significant effects. From extending the analysis
to quantile panel methods, we see that there is a relatively constant penalty for being
a smoker across quantiles, independently of the amount smoked. This does not hold in
the extreme quantiles, where infants in the hazard zone are shown to be more severely
affected by smoking than other parts of the distribution, regardless of the quantity of
cigarettes. Lastly, using shrinkage FE estimation for robustness, we find that OLS with
many predictors gives a numerical upper bound on the effect of smoking, while pure
FE estimation gives a lower bound.



1 Introduction

Low birthweight increases child mortality and has long term effects through increased mor-
bidity. These are obviously undesirable outcomes for the child, the families and society as
a whole. For example, it increases costs for health, education and social services occur (see,
e.g., Petrou et al., 2001). While the consequences of low birthweight have received a con-
siderable amount of attention in both the medical and the economic literature it is perhaps
more interesting from a policy perspective to consider the determinants of birthweights.
After all, once a child is born, the child, its families and society bear the adverse health
consequences of low birthweight.

Maternal smoking has long been identified as a key determinant of birthweight, see e.g.
Kramer (2001) Abrevaya (2006), Abrevaya and Dahl (2008) and Bache et al. (2012), and
all results, despite being obtained through different methods, point towards a negative effect
of smoking on birthweight.

To elaborate on the findings in the literature, we investigate the relation between smoking
and birthweight, trying unveil the ”true” causal effect of smoking on birthweight. This is a
Herculean task, but we try to accomplish it by presenting results from both standard mean
regressions in a panel setting and using quantile panel methods. Ideally, we would like to
have a natural experiment to determine the causal effects of smoking on birthweight. Even
with the ethical implication in mind, this data generating process is completely unrealistic.
We believe the data that are available to us, allows us to get as close as possible to finding
causality, if carefully analyzed given the above constraints.

Our main findings from standard mean panel regressions illustrate the problem of omitted
variables. Our baseline model gives us an estimated impact of smoking of around -160g.
Furthermore, we find that both the decision to smoke or not - but also the decision how
much to smoke has significant effects. From a policy perspective these effects are interesting
as they happen from behaviour policy makers can actually change.

We extend the analysis from analyzing the mean to analyzing the whole distribution of
birthweight using quantile panel methods Our main finding are that there is a relatively
constant penalty for being a smoker across quantiles, independently of the amount smoked.
This does not hold in the extreme quantiles, where infants in the hazard zone are shown
to be more severely affected by smoking than other parts of the distribution, regardless of
the quantity of cigarettes.

All-in-all we find that smoking shrinks the birthweight, and this result is robust to analyzing
the mean and the entire distribution of birthweights. Furthermore, our analysis using
shrinkage FE estimation for robustness suggest that OLS with many predictors gives a
numerical upper bound on the effect of smoking, while pure FE estimation give a lower
bound. This also shows the gains from using a panel data structure compared with standard
cross-section methods as we have the tools to deal with some of the heterogeneous effects.

The outline of the paper is as follows; in section 2 we describe the sample, furthermore
we perform mean regressions using the panel dimensions of our data. Section 3 extends
the analysis to quantile regressions. In section 4 we elaborate on the quantile model even
further and finally section 5 concludes.



2 Data and Preliminary Analysis

2.1 Data Description and Transformations

The raw dataset contains 37080 observations. We have initially tabulated descriptive statis-
tics for the explanatory variables to screen for outliers and determine compositional effects
in the sample. Since our primary interest is in the effects of smoking, we have also tab-
ulated descriptives conditional on smoking status. The tables with summary statistics in
the appendix, shows that on average smokers are younger mothers, they have a shorter
education, are less likely to be married and they have had a larger share of intermediate
and inadequate cases of prenatal care. Thus, we see that there is important differences
between smokers and non-smokers.

The average daily consumption of cigarettes has missing observations in about 179 cases.
These mothers have been removed along with observations of mothers with a consumption
above 60 cigarettes per day, which we deem a highly unlikely intake. The reason that we
doubt the reported cigarette intake is that we suspect that the numbers are self-reported.
This amounts to 483 observations or 161 mothers. This reduced the sample size to 36597
in total, which still represents the vast majority of the data. Regarding birthweight, the
question comes up whether extreme low and extreme high weights should be treated as
outliers or not, a quick web search showed that even though these extreme cases are rare
they are indeed plausible, therefore we chose to leave all the observations in the sample.

Finally, we transform the data into a panel, where we use the unique mother identifier and
the birth number as the time dimension. We have 12199 mothers and a strongly balanced
panel, where each mother gives birth to 3 babies. Since our identification strategy will
build on panel estimators, we also need to comment on the time variation that we have
available in the data. This has important effects for identification. Obviously, the variation
in the number of cigarettes and smoking status are central variables to analyze. In the
appendix we decompose the variation of central explanatory variables into variation within
and between, where variation within denotes variation due to changes in behaviour for a
given mother and between variation denotes variation between different mothers. Since
especially FE estimators rely on variation within, it is important to asses whether this
variation is present and ”large” enough to create credible results. From the tables with
summary statistics in the appendix, we see that there will on average be 2 years between a
birth for a given mother.

The panel consists of 3829 observations of mothers smoking during pregnancy. Of these
smoking mothers there are 1661 who are not smoking in all three waves, that is, they are
changing their behaviour from either smoking to non-smoking or non-smoking to smoking.
It is the variation in these 1661 mothers that will allow us to identify the effect of smoking
during pregnancy.

Predetermined variables and also variables like marriage do not change for a given mother
in our panel and therefore these will be dropped when we do FE estimation.

2.2 Panel Data Estimation Results

Let Y be the dependent variable, birthweight in our case, X is a vector explanatory vari-
ables. We consider the following linear model

yi,b:ﬁ’m@b%—ci—kei’b, Vi=1,...,n;b=1,2,3 (1)



where i indexes the mothers, b is the birth index and n is the number of observations.
Importantly, ¢ denotes the mother specific effects, which is of fundamental importance in
the following analysis, as it might be correlated with smoking, preventing us from identifying
the causal parameters.

This familiar problem of omitted variable bias exists due to compositional differences be-
tween the group of smokers and non-smokers. Therefore we ideally need to control for all
variables that are different between the two group, and at the same time are considered an
important determinant for birthweight. To mitigate the omitted variable bias, we exploit
the panel structure of the data, in particular using random-effects and fixed-effects type
models. We do not present the well-known standard random-effects model.

The Correlated Random-Effects (CRE) Model of Chamberlain (1982, 1984) models the
unobservables ¢; as a linear projection on X with an additional disturbance, denoted by
v;. The linear structure implies that the endogenous variable, smoking, in X impacts
birthweight through two channels: 1) A direct effect modelled as #’X and 2) through
the unobservable effect ¢. Under the assumption F(v;|z;) = 0, the CRE model allows us
to identify the direct effect of smoking, thereby removing the indirect effect through the
unobservables. This is indeed the parameter of interest in the analysis.

The Fized-Effect (FE) Model allows the unobserved heterogeneity ¢; to be correlated with
observables X in a arbitrary way. Under the assumption E(e;p|z;,¢;) = 0 for all ¢ and b,
we are able to identify the partial effect of smoking on birthweight conditional on both the
observables and the unobserved heterogeneity. For the standard FE estimation case, we
can estimate [ consistently using first differences, see Wooldridge (2010), but for quantile
panel methods, things are not as straightforward, see Section 3 for details. There are both
pros and cons from this method. One argument, clearly, is that allowing for fixed individual
heterogeneity reduces the omitted variable bias even further, but since smoking behaviour
is likely to be rather constant it could potentially mean that important variation is removed
from the estimation process.

In order to reliably assess the significance of smoking for maternal decisions, we need to
identify causal effects. That is the "pure” effect obtained from smoking status. However,
the existence of unobserved variables that are correlated with smoking and, at the same
time, impacts birthweight makes identification troublesome. More formally, let Y be the
dependent variable, birthweight in our case, X = (X7, X)) is a vector explanatory variables,
where X contains smoking related variables (i.e, smoking indicator and/or average number
of cigarettes smoked) and X5 contains the remaining variables and a constant. We consider
the following linear model

yi = B1x1i + Bowe; + e, Vi=1,....n (2)

where n is the number of observations and e is the error term satisfying E(e) = 0 and
E(eX2) = 0. However, X1, the variables of interest, may potentially be correlated with e,
preventing us from identifying 8;. This familiar problem of omitted variable bias exists due
to compositional differences between the group of smokers and non-smokers. Therefore we
ideally need to control for all variables that are different between the two groups, and at
the same time are considered an important determinant for birthweight.

The panel data we have available allows us to try to solve this problem by extending the
model by accounting for unobserved heterogeneity. Therefore to the ommitted variable bias,
we sequentially control for confounding effects extending the model from a naive regression
of birthweight on smoking in a pooled OLS model, into a RE setting and lastly a FE



setting. The results are presented in Table 1 below. In the table we see in column 1 that
our initial raw estimate of the effect of smoking is -291g. This estimate does not change
when we allow for random effects which is also what we could expect since pooled ols results
are still consistent under the assumption of random effects. Interestingly the effect from
smoking falls dramatically when we estimate the model in an FE setting (we remove the
unobserved heterogeneity term by estimating the model in first differences and also in the
usual dummy approach - the estimates do not differ from each other suggesting that either
way is appropiate). This illustrates the importance of unobservables (ommitted variable
bias). The effect is now -158g which is a lot smaller than the results we have obtained
using a cross section data set. We stress again that it is important to keep in mind that the
huge difference is likely also to be caused by the fact that we remove important variation
from the explanatory variables. We will investigate wheter this is relevant below. Lastly
we perform a Hausman test to test the endogeneity problems that our estimates between
the RE and FE model suggest. The teststatistic is 179.30 and this clearly illustrates that
the panel dimension (or many explanatory variables) is crucial in order for us to identify
causal effects.

As a next step we control even further for omitted variable bias by including our baseline
model from our earlier paper. Generally, determinants of birthweight can be divided into
predetermined variables like genetic effects etc. (variables determined prior to pregnancy)
and variables linked to the maternal behavior during the pregnancy. Of course in our dataset
a strict distinction between such variables are likely not to be possible. For instance, the
variable education can be thought to determine both the maternal behavior and it is likely
also to be an effect of other ”predetermined” variables. To keep the number of estimated
parameters at a minimum exclude regional dummies and dummies for years, we have tested
wheter these change any of our results and it does not.

Table 1: Fixed effects and Random effects models

POLS RE FE FE FE
(@D) 2) 3 (€)) (5
birwt birwt birwt birwt birwt
smoker -291 -291 -163 -158.4 -166.0
(-29.86) (-29.86) (-12.05) (-12.98) (-12.45)
age -0.326
(-0.05) (0.49)
agesq 0.313%* 0.175
(2.93) (1.50)
male 147 .5%* 136.7
(31.27) (26.56)
parityl 70.45%%%
(12.22) (10.94)
parity2 L01%*
(9.69) (8.23)
parity3 42.62%%* 35.22%%*
(4.97) (3.76)
nopnv 88 2
(1.33) (0.83)
pnv2t 28.21* 5
(2.50) (4.58)
pnv3t 75.88%* 119, 5%%*
(3.03) (4.37)
pnc_inter -49,96%%* =-73.97%%%
(-5.18) (-7.03)
pnc_inad -92.99%** -128.4%%*
(-4.51) (-5.71)
gest (6344.‘2?***
_cons 3520.9%%%* 3520.9%*%* 3507.6%%%* -188.6 3157.9%%%*
(925.46) (925.46) (1370.32) (-1.73) (29.62)
N 36597 36597 36597 36597 36597

Column 4 in Table 1 reports the estimated coefficients of the FE model including all ex-
planatory variables that vary over time. We have also tried the same model and a model
including variables that doesn’t change over time, but again the hausman test clearly prefers



the FE specification. The results in column 4 reflect the fact we reduce the omitted variable
bias which in this case overestimates the negative effect of smoking. Finally we include a
variable for gestation and report the estimated coefficients in column 5. Notice that the
effect of smoking changes very little as we include gestation, supporting the robustness of
our estimation procedure.

Our final estimated coefficient on smoking is -158.4g. This result is consistent with the
findings from the FE results reported in Table IV in Abrevaya (2006). From our baseline
model (column 4) we also see that: 1) The effects from the mothers age is non-linear. 2)
Male babies are generally bigger. 3) The positive coefficient on parity (1st, 2nd and 3rd
child from the parity variable) is likely to reflect feedback effects, see e.g. the argument
in Abrevaya and Dahl (2008). The estimated effects suggest a decreasing relation very
likely to be due to the fact that the mother is getting older. 4) The variables middling
prenatal care shows that prenatal visits generally affects birthweight in a positive direction,
but the quality and intensity has to be sufficient. 5) Lastly, and not surprisingly, gestation
has a large positive effect. It is interesting to notice that the partial correlation between
gestation and smoking is relatively weak since the estimated coefficient is hardly affected
by the inclusion of the former variable.

The specification estimated above is an additive specification with respect to the effects
from smoking. This is of course an approximation of the true conditional mean model, and
in the next subsection we extend this model by considering additive effects and we also
include the number of cigarettes smoked as an explanatory variable!.

2.3 Extending the baseline model

Our baseline model analyzed above assumes that differences in birthweight can be explained
by whether or not the mother smokes and the number of cigarettes is less relevant. In
column 1 of Table 2 we extend the analysis by including the number of cigarettes smoked.

We have tried several other combinations of other non-linearities between other explanatory variables
but these have no effect on our findings



Table 2: Fixed effect - extension to the baseline model

FE FE FE
(1) () (3)
birwt birwt birwt
smoker -99.08%**
(-5.64)
cigs -5.265%%* . -4,565%%*
(-4.69) . (-4.04)
smokerblack 78.11 78.11
(1.94) (1.94)
smokerage -1.683 -1.683
(-0.74) (-0.74)
smokerparity -7.390 -7.390
(-0.92) (-0.92)
smokergest -1.574 -1.574
(-1.11) (-1.11)
age 0.290 -15.47 -15.47
(0.04) (-1.85) (-1.85)
agesq 0.304%* 0.271%* 0.271%*
(2.84) (2.51) (2.51)
male 147 . 7%%* 147 . 5%%%* 147 .5%%=
(31.32) (31.27) (31.27)
parityl 70.47%%* 69.77%%* 69.77%%*
(12.23) (12.09) (12.09)
parity?2 63.32%%* 61.48%** 61.48%%*
(9.74) (9.43) (9.43)
par--ityg 43.03%%** 47 .43%%% 47 .43%%*
(5.02) (4.82) (4.82)
nopnv 46.75 48.10 48.10
(1.45) (1.50) (1.50)
pnv2t 28.55*% 28.37* 28.37%
(2.54) (2.52) (2.52)
pnv3t 75.19%%* 75.14%%* 75.14%%
(3.00) (3.00) (3.00)
pnc_inter -50.08%** -50.18%** -50.18%**
(-5.20) (-5.21D) (-5.21)
pnc_inad -92.32%%* -92.34%%x* -92.34%%*
(-4.48) (-4.48) (-4.48)
gest 84.68% 84.96%* 84 .96
(68.49) (67.50) (67.50)
year 18.59%%* 18.59%%*
(3.39) (3.39)
_cons -197.7 201.0 201.0
(-1.81) (1.18) (1.18)
N 36597 36597 36597

t statistics in parentheses

Interestingly, the inclusion of the latter reduces the point estimate of smoking dramatically.
As expected the number of cigarettes have a negative impact on birthweight, ie the more you
smoke the less your baby weights at the time of birth. Quite surprisingly, the comprehensive
empirical studies in e.g. Abrevaya (2006), Abrevaya and Dahl (2008) and Bache et al. (2012)
have not considered this effect. This is potentially caused by the lack of or reluctance
among the authors to use survey data. For obvious reasons, the number of cigarettes might
be under-reported, which will bias our estimates. Arguably, the under-reporting leads to
estimated effects that are ”too negative”, but given significance at a 1% level, we still
think this result opens the scope for further research in this area. It is interesting from an
economic perspective to compare the effects of smoking status against the amount smoked.
Our estimates suggests that there is a large punishment from being a smoker alone (99g)



while the punishment for an average smoker in the sample (13 cigarettes) is about three
times smaller (approximately 65g).

The above analysis, along with its counterparts in the literature, relies on an assumption
on homogeneous effects of smoking, i.e. that smoking affects birthweight linearly. This is
of course an approximation and in columns 2-3, we relax this assumption by interacting
smoking status with race, parity, gestation and age. We see that none of the interaction
terms are statistically significant. Note that this reflacts that it is a very small subsample
for example both black and change smoking behavior, therefore are the interaction terms
very imprecisly estimated. For that reason it is not feasible to determine multiplicative
effects. In the following we will thus focus on additive effects.

3 Quantile-Based Panel Estimation

3.1 Birthweight Distributions

While Section 2 provides information on the average mother and birthweight, we need
to consider the entire density for a more comprehensive understanding of the data. The
average birthweight is not in the critical region below 2500g and, hence, the average is
not of primary interest from a child health, maternal decision and policy perspective. To
enhance our understanding of birthweights, we plot the unconditional density (using kernel
smoothing techniques) along with the corresponding conditional densities for smokers and
non-smokers, respectively, in Figure 1 below. The Figure is partitioned into four panels
reflecting the first, second and third birth wave, respectively, and all waves. The partition
is made to reflect the waves in the panel data and not between parity.

A few general comments are in place. The most striking feature, in Figure 1, is that both the
mode and the mean of birthweight is lower for smokers than for non-smokers. Compared to
the normal distribution, the left tail is more pronounced for the unconditional distribution
of birthweights. This could be explained by the fact that is hard to prevent preterm
births, but the birth can be forced (e.g., medication and C-section) and this is usually done
relative shortly after the due date. Thus, high birthweight can and are prevented, while
low birthweights cannot be prevents, such that we would expect such a skewed distribution.
On the left tail, left of 2500g, the distribution is much fatter for smokers than for non-
smokers. It is particularly illustrating to consider birthweights less than 1500g, where there
is essentially zero probability mass for non-smokers and considerable mass for smokers

An important feature of Figure 1, motivating the further analysis, is that smoking does not
seem to affect all regions on the distributions in the same way. In the left tail, the conditional
distribution for smokers is fatter and more wiggly than for non-smokers, suggesting the
imposition of a constant effect of maternal smoking on birthweights will be insufficient.

Lastly, when considering the differences across waves in the panel data, we see that the
distribution of later (2 and 3) waves are more fat tailed compared with the first wave.
This clearly relates to mother age, since by construction she must be older in later waves.
This relates to the findings in Section 2, where age had a multiplicative negative effect on
birthweight in connection with smoking and, and similarly for parity.

This visual inspection suggest that it is fruitful to analyze the whole distribution of birth-
weight rather than focusing on averages. The standard approach to allow for varying effects
of smoking on birthweights across the distribution is quantile regression (Koenker and Bas-
sett, 1978).
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Figure 1: Density plot of birthweight




3.2 Quantile-Based Panel Estimation Methods

Let 7 € (0,1) be the quantile of interest Define the conditional distribution function of YV
given X =z as Fy(y|z) = Pr[Y < y|X = z|. Then, the conditional 7-quantile of Y given
X =2is Qy(r|r) =inf{y : Fy(y|z) > 7}.

Instead of specifying a data generating process (DGP) for Y and derive its implied quantile
function, we take a reduced form approach by directly specifying the quantile regression
function as an approximation to the true quantile function. This is standard in the litera-
ture, because deriving the implied quantile functions are intractable for most specifications
of the DGP (see Abrevaya and Dahl, 2008).The parametric quantile regression specifies
the conditional 7-quantile as a parametric functions of the covariates X, and estimates the
parameters. More formally, we consider panel extensions of the classical linear conditional
function of Y given X = x:

Qy (t|z) = 2'(r).

The linear functional form is flexible in the sense that is accommodates a set of regressors
x € X, the support of X, the includes power functions, splines, etc. of the original variables.

3.2.1 Quantile CRE

A limitation of the classical linear quantile regression model above is that it cannot accom-
modate unobservable effects, which impact the estimated effect of smoking, as discussed
in Section 3. To extend the panel data analysis to accommodate unobservables, we follow
Abrevaya and Dahl (2008) and Bache et al. (2012), who account for unobservables by aug-
menting the quantile function with constructed covariate(s), s;. This means that we can
write the reduced form quantile for Y as

Qy (t|z,s) = 2'B(7) + s'm(7).

This implies that we may used the standard quantile regression of Y on X and S as

n 3
~ 5 . / /
(#(r), (7)) = argmin ; ; pr(Yip — Sim — a4, B),

where p,(u) = (7 — (u < 0)) (see Koenker and Bassett, 1978; Fernandez-Val and Cher-
nozhukov, 2011; Koenker and Hallock, 2001). For identification of 8(7), s has to suffi-
ciently capture the effects of unobservables on the quantile of interest, see Abrevaya and
Dahl (2008); Bache et al. (2012) for a formal definition of sufficiency. It readily follows that
identification hinges on whether or not sufficiency holds, which we will assess this critically
in the application. Note that 5(7) has interpretation of marginal effects in a world without
heterogeneity, i.e. a counterfactual effect.

3.2.2 Quantile FE

The validity of quantile CRE hinges on the sufficiency assumption on s. Hence, if one knows
the functional form (linear projection) of ¢, it is straightforward to implement. However, its
simplicity also makes it prone to misspecification. An alternative is quantile FE. Following
Koenker (2004a) and Bache et al. (2012), we consider the following reduced-form quantile
specification:

Qy(t]z,5) = 2'B(7) + ai,



where a; = ¢;0(7) is the impact of unobservables on the 7-quantile. The standard approach
to FE estimation in linear model, differencing the data, is not feasible in a quantile setting.
Let m,...,7; be k distinct quantiles and define wy, ..., w; as the weights of these indices
on estimation. The model parameters are estimated solving the following minimization
problem.

(B(11), ..., B(1k), a1, ..., an) = arg min M(r,w, X, y, \), (3)
517"'76k7a17"'7an
n 3 n
M(vavXayv)‘) :ZZ w]pT](y'L,b_%;’bﬂ—az) +/\Z|az] (4)
j=1i=1b=1 i=1

The special feature of this minimization problem is the regularization parameter A. This
method was introduced by Tibshirani (1996) and Koenker (2004b) for quantile regressions.
To enhance the understanding of the estimator, consider two special cases. First if A — 0,
the estimator collapses to a weighted dummy-variable regression (i.e., a; acts as dummy
for mother 7). Secondly, if A — oo, the above estimation problem becomes equivalent to
a weighted cross-sectional regression. The appeal of the above estimator is that it allows
for a continuum of cases in between these two extremes, and mitigates the problem of
overparametrization encountered in panels with a short time dimension. The parameter A
penalizes absolute values of a;, shrinking the resulting estimates towards 0. It essentially
lets us control how much heterogeneity we want to allow for in the estimation. Thus, we
can trade off bias from imposing homogeneity against imprecision from estimating many
estimators. The interpretation of the FE results is subject to the same limitations discussed
in Section 2.

3.3 Empirical Results

All panel quantile regressions are computed using the quantreg package for R 2.15.0. In
this section we first consider different model specifications, then turn our focus to the tails
of the birthweight distribution. 2

Our main interest is measuring the causal impact of smoking during pregnancy on the
infant’s birthweight. The two variable describing the smoking behaviour of mothers are
complementary. The first is a dummy variable reporting whether the mother smoked during
pregnancy or not, while the other one reports the average number of cigarettes smoked per
day. We included the following variables in all regressions: male, all maternal behaviour
and age. As these coefficients are not of interest, we will not report them. For the variable
of smoking behaviour, we show results for the inclusion of both the smoking dummy and
the number of cigarettes, while results using only cigarettes or only the smoking dummy
are reported in the appendix.

We look at two different sets of quantiles. For the standard specification, the use 7 =
(0.1,0.2,...,0.9), i.e. steps of 0.1. The second set of quantiles looks closer at the tails of
the distribution by using the values

T = (0.01,0.05,0.1,0.25,0.5,0.75,0.9,0.95,0.99).

2If the explanatory variables included in regressions are not reported, then they are the same as in the
baseline model presented above.
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3.3.1 Results for Panel Quantile CRE

First, we show the estimates using panel quantile CRE, where we have computed s; as in
Abrevaya and Dahl (2008) and Bache et al. (2012), and the results are presented in Figure
2 for the standard quantiles.

Figure 2: Quantile Regression Estimates for Model with both smoking variables
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In the model where both cigarette consumption and smoking status are included, there is a
relatively constant penalty for being a smoker across quantiles, independently of the amount
smoked. This suggests that smoking is ”in some sense” rank preserving on the distribution
of birthweights, given that you smoke. The effect of additional cigarettes is however far to
be negligible even though the amplitude of the effect is smaller than that found in Figure
9.Comparing these numbers to their counterparts in the appendix illustrates the need to
include both the smoking dummy and the cigarette variable to capture the direct effect of

11



each. The effects are very close to those estimated using FE on the mean. Despite the
relatively constancy of both smoking as a dummy and cigarettes, there are indications that
we see different effects in the tails, and this is elaborated upon in Figure 3

Figure 3: Tail Quantile Regression Estimates for Model with both smoking variables
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From Figure 3, we observe some interesting results. We see that the tails estimates (in
both tails) both for the smoking dummy and for cigarettes lies outside the FE confidence
bands. For the smoking dummy, this implies that infants in the hazard zone (below the
0.05 quantile) are more severely affected than other parts of the distribution, regardless of
the quantity of cigarettes. In relative birthweight, this effect is even larger as the children
are, by definition, small. This has clear policy implications and suggest physicians should
carefully identify risk groups and advice them to stop smoking. The results of this paper,
along with those of e.g. Abrevaya and Dahl (2008), suggest that age, education marital
status, drinking behaviour and prenatal care are important in identifying these risk groups,
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but a detailed study of risk groups are beyond the scope of this paper. A possible direction
for further research in this area could be to design threshold probit models to determine
risk factors.

3.3.2 Results for Quantile FE estimation

As Koenker (2004b) mentions, the choice of the regularization parameter A is an open re-
search question. Cross validation or information criterion are often used to select among a
set of possible regularization parameters. Another method is to use a consistent estimator
of the parameter to penalize raised to a negative power, this approach was coined adaptive
LASSO by ?. However the computing power required to estimate a large number of models
and select among them is too big and available time too short to implement any of these
approaches. We experimented with a handfull of values of A and settled for A = 1. The
choice of regularization parameter didn’t appear to be crucial. Also due to the computa-
tional burden of this method, the results were estimated only on a randomly selected subset
of mothers corresponding to 10% of the available sample.

Fixed effect parameters where considered to be equal to zero if their absolute value was
below 10~7. Because of the penalty, the parameters value solving the penalized objective
function are biased. The model was reestimated in a second step using only the fixed effects
that passed the first step screening. We find that very few (or none in most cases) of the fixed
effects were non-zero. These results would tend to indicate that unobserved heterogeneity
is not a major issue in these data, keeping in mind the limitation of the method discussed
above. These results in the quantile setting contradict the test results reported in the
panel-OLS estimation part of the paper. This could be due to the very different nature of
the estmation problem in both mean regressions and quantile regressions.
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Figure 4: Quantile Regression Estimates for Model with both smoking variables
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Figure 4 reports the results from this estimation. Notice that the effects on the quantiles of
the distribution lies somewhere above the earlier reported CRE results, although the effects
from smoking is not as large as cross sectional quantile regression results. The relative effect
on quantiles is similar to earlier findings throughout the distribution. The impact of the
quantity of cigarettes smoked is not significantly different from 0, this indicates that some
caution is needed when extrapolating these results. Keeping this in mind we nevertheless
use the results above as an indication on the fact that normal FE methods could exacerbate
the importance on unobserved heterogeneity by removing relevant variation from the data.
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4 Causality Discussion

In this section we discuss some of the assumptions made in the above analasis. First of
all, the methods are based on a strict exogeneity assumotion. This assumption might be
violated for three reasons. First it would be violated if there is some sort of feedback effect,
such that smoking behavior during pregnancy can be influenced by previous birth outcomes.
Abrevaya (2006) suggest an IV approach for controling for this problem. The basic idea
is to use of, for example, the outecome of the first wave as an instrument for the change
in the smoking behavior in betwwen the seccond and the third wave. This instrument
should not be correlated with birth specific unobservables in the seccond and third wave
but might be correlated with the smoking behaviour. Our sample size of 12199 mothers is
too small for the IV approach to identify the smokings effect on birthweight according to
Abrevaya (2006). Seccond, we would have a problem, if the smoking status is misreported
in the status, especially if the misreporting are sytematically correlated with unobserved
charcteristics. Third, it would be a problem if the change in smoking status is correlated
with changes in the unobservables, as both our fixed effects approach and correlated random
effects approach would only capture time invariant unobservables.

Another pitfall in both the fixed effects approach and correlated random effects approach,
is that we difference out all time invariant variables, thus removing a lot of potentially
important variation in the data.

So, whether the results are causal or not depends on whether the above mentioned as-
sumptions holds. But given the robustness of our results and the similarity to the existing
literature on the subject, we deem that this is the closest we can come to finding a causal
relationship between maternal smoking and birthweight.

5 Conclusion

The purpose of this paper is to assess the significance of the effect of maternal smoking on
birthweight. We find a statistical significant effects, which is robust across various panel
estimation methods and specifications. We are not only interested in statistical significance,
but also the significance for maternal decision making. Our main results suggest that there
is a significantly negative effect of smoking on the mean birthweight. Furthermore, we find
that both the decision to smoke or not - but also the decision how much to smoke has
significant effects. From extending the analysis to quantile panel methods, we see that
there is a relatively constant penalty for being a smoker across quantiles, independently
of the amount smoked. This does not hold in the extreme quantiles, where infants in
the hazard zone are shown to be more severely affected by smoking than other parts of
the distribution, regardless of the quantity of cigarettes. Lastly, by using shrinkage FE
estimation for robustness suggest, we find that OLS with many predictors gives a numerical
upper bound on the effect of smoking, while pure FE estimation gives a lower bound. Pooled
OLS works as a cross-section, and we see by utilizing the panel structure of the data, we
are able to reduce the omitted variable bias considerably.
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Appendix Supplementary Figures
Descriptive Statistics for Section 2

Figure 5: Descriptive Statistics for Smokers and Non-Smokers

untitled

-> smoker = 0
variable | Obs Mean Std. Dev. Min Max
_____________ e
age 32768 29.05478 5.24444 14 46
hs 32768 .2583008 .4377069 0 1
sc 32768 .2289429 .4201588 0 1
cg 32768 .4342041 .4956596 0 1
married 32768 .9171448 .2756675 0 1
_____________ e
bTack 32768 .067688 .2512136 0 1
male 32768 .51651 .499735 0 1
parity 32768 1.843292 1.628217 0 14
gest 32768 39.323 2.030224 19 47
cigs 32768 0 0 0 0
_____________ i
smoker 32768 0 0 0 0
nopnv 32768 .0084839 .0917179 0 1
pnv2t 32768 .1205444 .3256021 0 1
pnv3t 32768 .0214233 .144793 0 1
pnc_inter 32768 .1816101 .3855287 0 1
_____________ o e T
pnc_inad | 32768 .0436401 .2042962 0 1
birwt | 32768 3527.69 520.2488 290 5925

-> smoker = 1
variable | Obs Mean std. Dev. Min Max
_____________ m o e _
aﬁe 3829 25.82215 5.251906 14 42
s 3829 .467485 .4990068 0 1
sc 3829 .1358057 .3426269 0 1
cg 3829 .0511883 .2204104 0 1
married 3829 .6043353 .4890568 0 1
_____________ oo T T
black 3829 .1149125 .318958 0 1
male 3829 .4993471 .5000649 0 1
parity 3829 1.888483 1.475096 0 11
gest 3829 39.03996 2.706608 20 47
cigs 3829 12.64403 7.799904 1 60
_____________ Mmoo L  ___
smoker 3829 1 0 1 1
nopnv 3829 .0331679 .1790983 0 1
pnv2t 3829 .2371376 .4253829 0 1
pnv3t 3829 .0608514 .2390888 0 1
pnc_inter 3829 .2750065 .4465759 0 1
_____________ m o T
pnc_inad | 3829 .134761 .3415127 0 1
birwt | 3829 3171.877 556.5067 365 5131
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Figure 6: Summary Statistics for all Explanatory Variables
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std. Dev Min
5.337656 14
4.983559 15.66667
1.912084  23.38323
.3197289 0
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0 .8844168
.2595299 0
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0 .0726289
.4997903 0
.2942921 0
.4039644 -.1519523
1.612918 0
1.391016 1
.8165077 .8480203
2.112898 19
1.439243 27.66667
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3.915924 0
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.3060752 0
.2630978 0
.156414 -.5620406
.3933943 0
.2654335 0
.2903583 -.4752849
.2243829 0
.1652966 0
.1517438 -.6134929
535.3463 290
418.9375 1411
333.3115 749.7957
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Panel Quantile Regression Results

Figure 7: Quantile Regression Estimates for Model with cigs variable
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Figure 8: Tail Quantile Regression Estimates for Model with cigs variable
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Figure 9: Quantile Regression Estimates for Model with smoking dummy
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Figure 10: Tail Quantile Regression Estimates for Model with smoking dummy
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